

Feasibility Study on a UK-China Open Access (B)4G Wireless Mobile Communication Testbed

Dr Xuemin Hong

(UC4G Shanghai Workshop, 12 September 2010)

Network Manager

UK-China Science Bridges on (B)4G (uc4g.eps.hw.ac.uk)

Research Assocaite

Joint Research Institute in Signal and Image Processing Heriot-Watt University, Edinburgh, UK Phone: +44-131-4514187 Fax: +44-131-4514155 E-mail: <u>x.hong@hw.ac.uk</u> URL: <u>www.eps.hw.ac.uk/~xh29/</u>

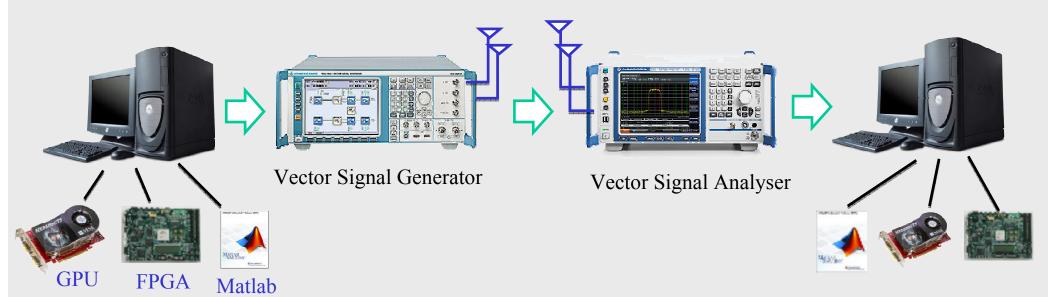
Outline

- I. Background
- II. Proposal for a Link Level Testbed at the UK
- III. Proposal for a UK-China Testbed Network
- IV. Suggestions and Future Work

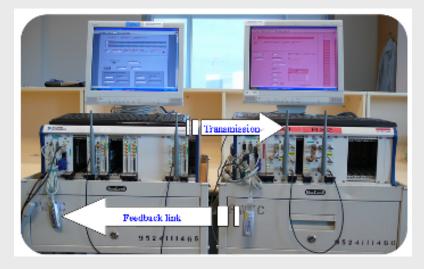
- UK-China Science Bridges: R&D on (B)4G Mobile Wireless Communications
 - **Duration**: 3 years (01/08/2009-31/07/2012)
 - **Funding**: £1,174,258 (fEC) or £939,623 (RC contribution)
 - A key objective: Accelerate the deployment of research knowledge
 - Include 6 work packages
- Work Package 4 (WP4): Wireless prototype/testbed development
 - **Duration**: 21 months (01/08/2010-30/04/2012)
 - **Funding**: $\sim \pounds 100k$
 - Motivation
 - Enable proof of concept
 - Calibrate simulation results and steer R&D efforts
 - Identify and showcase advanced technologies
 - Value and impact
 - Facilitate technology transfer
 - Encourage commercialisation

- Limited funding
 - Our budget: 100 thousand pounds
 - The German EASY-C project: 47 million euros
- Shortage of man power
 - No full time staff (partial commitments of a post-doc and 4 MSc students at HWU)
 - Lack of implementation experience
 - A testbed team in China can easily include tens of highly-skilled students
- Researcher-friendly testbed
 - Researcher usually have limited experience in implementation.
 - There is no mature solution yet for **rapid prototyping** of wireless systems.
- Features of the testbed
 - The WP4 testbed should aim to differentiate itself from existing testbeds.
- Diverse testing demands v.s. limited testing capability
 - It is difficult to clearly define the testing demands and match them to the testing capability.

- Additional resources
 - WiCO and BUPT (etc) are willing to open (part of) their testbeds (SWAN and SORA).
 - Part of the WP2 funding can be used to support visits to set up the testbed at HWU.
 - Extra funding for testbeds is possible from. e.g., industry or EPSRC instrument grant.
- Scope of the testbed
 - Construction of a comprehensive new UK testbed is not a feasible option.
 - A simple, yet useful (possibly link level) testbed should be built at HWU.
 - The new testbed can be linked with other testbeds to form a UK-China Testbed Network.
- Suggested areas to be tested
 - User experience; Terminal software; Scheduling and QoS; Cooperative communications (relay, CoMP, network coding, backhaul and coding, etc); Green radio; Cognitive radio (carrier aggregation); Self optimising networks; Spatial modulation
- Joint planning of WP4 with other WPs
 - The testbed should be set up within 1.5 years, allowing 0.5 years to obtain results.
 - It is important to understand testing demands from the industry.


Outline

- I. Background
- II. Proposal for a Link Level Testbed at the UK
- III. Proposal for a UK-China Testbed Network
- IV. Suggestions and Future Work

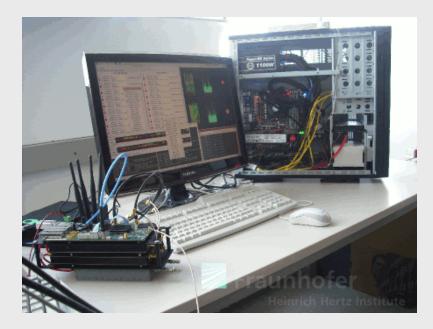

- Build a testbed by integrating PCs and standard radio testing instruments
 - Use standard instruments for RF signal generation and reception
 - Use PC workstations for baseband signal processing and control
 - Support off-line signal processing in Matlab
 - Adopted by WiCO

- Build a testbed based on modular instruments
 - Modular instruments for radio testing provide flexible and convenient integration of modular components for RF, baseband, and power, etc.
 - Compatible with Matlab; Complicated hardware design (e.g., HDL) can be avoided.
 - Suppliers include National Instrument (NI) and Aeroflex.
 - Adopted by WiCO

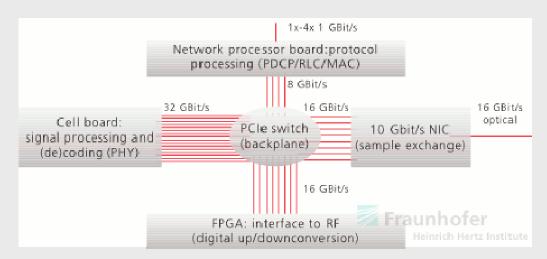
A NI instrument based MIMO-OFDM testbed at Nanyang Technological University, Singapore [http://www.pwtc.eee.ntu.edu.sg/Research/Pages/ research_projects_mimo.aspx]

Aeroflex 3020 Series PXI RF Signal Generator

- Purchase commercial off-the-shelf testbeds
 - Specialised companies sell commercial software define radio (SDR) testbeds including all components from baseband to RF.
 - Suppliers include Lyrtech and PenTek, etc.
 - The state-of-the-art products can support processing capability equivalent to 1 WiMax BS and 4 GSM BS.



PenTek 7142-428 SDR platform (www.pentek.com)



- Integrate the testbed based on commercial off-the-shelf subsystems
 - Off-the-shelf baseband, RF, and data acquisition subsystems can be purchased and integrated to build a testbed.
 - Different subsystems are commonly integrated through PCIe or PXI interfaces.
 - Adopted by Heinrich Hertz Institute (HHI), Germany

A SDR testbed at HHI, Germany (www.hhi.fraunhofer.de)

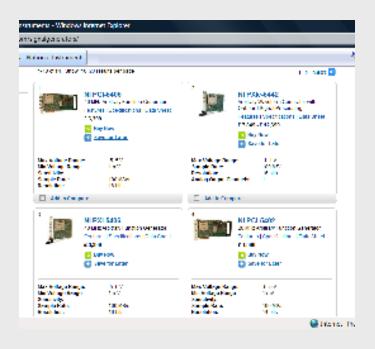
Architecture of the SDR testbed at HHI, Germany (www.hhi.fraunhofer.de)

10/18

- Design and produce customised testbed
 - Design subsystems from baseband to RF and produce highly customised testbed
 - Adopted by Southeast University, China

A Gbps transmission testbed at Southeast University, China

12/18

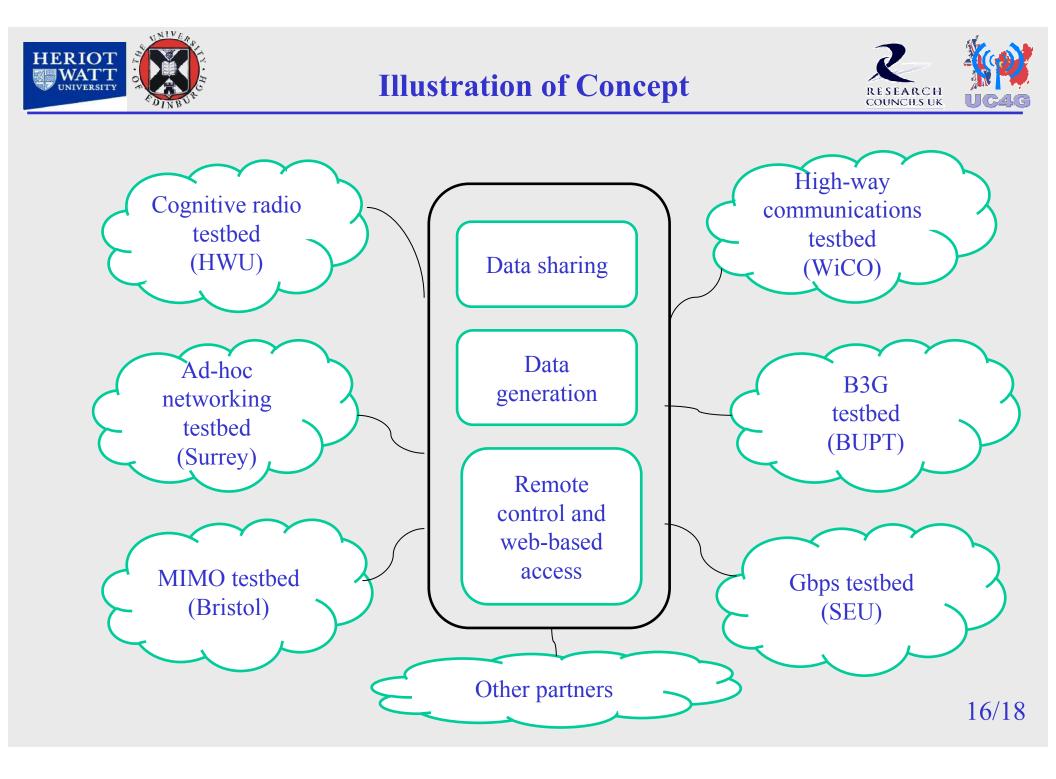

		Performance (e.g, bandwidth, real-time)	Flexibiity (e.g., spectrum, power)	Development Efforts	Cost
1.	Standard Instrument	Low~Medium	Low~Medium	Low	Medium
2.	Modular Instru me nt	Medium	Low~Medium	Low	Medium
3.	Commercial Testbed	Medium	Low	Low	Medium~High
4.	Integrated Testbed	Medium	Medium~High	Medium	Medium
5.	Self-designed Testbed	High	High	High	High

• Advantages of modular instruments

- Open architecture to allow flexible system configuration (e.g., MIMO, bandwidth, centre frequency, baseband processing methods, etc.)
- Scalable hardware architecture to allow system upgrade (e.g., SISO to MIMO)
- Capable to support real time

Diverse options for signal generators

Scale a system based on building blocks


Outline

- I. Background
- II. Proposal for a Link Level Testbed at the UK
- III. Proposal for a UK-China Testbed Network
- IV. Suggestions and Future Work

- There are many (both large and small scale) testbeds in the UK and China
 - Cover various layers and different scenarios (micro-cell, high-way, femto-cell, etc.)
 - Have different features
 - Some testbeds support remote access and control, e.g., SWAN in WiCO
- A testbed network that integrates various distributed testbeds
 - Feature-based integration
 - A pool of different distributed testbeds that support different testing features (e.g, scenarios, technical areas).
 - Data-based integration
 - Share (offline) data among testbeds (e.g., PHY layer testbed + MAC layer testbed).
 - Internet-based integration
 - Testbeds that support remote control can be integrated via Internet.

• Summary

- We have to set up a testbed and we have very limited budget and man power.
- It is important to understand current demands for testbeds in academia and industry.
- It is important for the new testbed to differentiate itself from the many existing ones.
- Possible way forward for a link-level testbed: based on modular instruments.
- To establish a Testbed network is attractive.
- Future work
 - Seek wider opinions from academia and industry regarding the UC4G testbed.
 - Visit BUPT, and possibly other UC4G partners.
 - Draft a testbed feasibility study report.

Thank you for your attention!

Dr Xuemin Hong

Network Manager, UC4G Project Post-doc Research Associate Joint Research Institute of Signal and Image Processing Department of Electrical, Electronic, and Computer Engineering Heriot-Watt University, Edinburgh, EH14 4AS, UK Tel: +44-131-4514187 Fax: +44-131-4514155 Email: x.hong@hw.ac.uk URL: www.ece.eps.hw.ac.uk/~xh29/