

Channel Estimation of LTE Downlink in High Speed Environment

Xuewu Dai

Dept. of Electronic and Electrical Engineering, UCL Dept. of Engineering Science, University of Oxford Email: <u>xuewu.dai@eng.ox.ac.uk</u>

Yang Yang (WiCO) John Mitchell (UCL)

上海无线通信研究中心

Shanghai Research Center for Wireless Communications

14 Dec 2011

Outline

- 1. Introduction
- 2. Channel model & LTE OFDM reception
- Section 2. Extended Kalman Filter (EKF)

 augmented state space model
 EKF for channel estimation
 EKF for channel interpolation
- 4. Implementation consideration
- 5. Simulation results
- 6. Summary

Motivation

- Future network aiming at improved mobility and certain QoS guarantees.
- within current LTE specifications, the description of UE speed is <120kmph
- LTE at velocity up to 350kmph is desired.
- Challenges in high-mobility applications (e.g. high speed train)

low sensitivity to high speed (the Doppler effect) fast switch

Wireless channels in high speed environment

QAM system and channel estimation

UCL

2. LTE reception and Channel model

Pilot-symbol assisted modulation (PSAM) in LTE/OFDM

- Known OFDM symbol, so-called pilots or reference symbols are inserted into the data stream
- Three kind of Time-Frequency allocation of pilot symbols: block pilot, pilot subcarriers and <u>scattered pilots</u>

2. LTE reception and Channel model

Pilot-aided channel estimation

- 1. Channel estimation at the pilot symbol location
- 2. Time-domain interpolation
- 3. Frequency-domain interpolation

2. Channel model and LTE reception

• 2.1 Multi-path Time-varying channel model

$$g(t,\tau) = \sum_{l=0}^{L-1} \alpha_l(t) \delta(\tau - \tau_l)$$
Channel Impulse Response (CIR)

$$g_k = \begin{bmatrix} g_{k,0} \ g_{k,1} \ \cdots \ g_{k,L-1} \end{bmatrix}^T$$
Channel Frequency Response (CFR)

$$\bar{\mathbf{h}}_k = \begin{bmatrix} h_k \begin{bmatrix} 1 \end{bmatrix} h_k \begin{bmatrix} 2 \end{bmatrix} \ \cdots \ h_k \begin{bmatrix} N \end{bmatrix}^T$$

$$h_{k+1,n} = a_n h_{k,n} + v_{k,n}$$

- An AR model describes the time variation of h_k [n]
- *h_k* [*n*]: channel attenuation to be estimated at the k-th OFDM symbol and at *n*-th subcarrier.

2.2 LTE OFDM reception

• LTE OFDM Channel equaliser:

$$\hat{x}_{k,n} = y_{k,n} / h_{k,n}$$

• Goal of channel estimation:

$$\arg\min_{\mathbf{h}}\sum_{k} ||\mathbf{x}_{k} - \mathbf{y}_{k}./\mathbf{h}_{k}||_{2}$$

• Key issue: how to get the right value of $h_{k,n}$

3. Extended Kalman Filter (EKF) for LTE channel estimation

$$\begin{cases} \mathbf{h}_{k+1} = \mathbf{A}_k \mathbf{h}_k + \mathbf{v}_k \\ \mathbf{y}_k = \mathbf{X}_k \mathbf{h}_k + \mathbf{w}_k \end{cases}$$

- h_k is the unknown CFR
- *A_k* is the parameters representing the time correlation coefficients of CFR
- V_k respresents the channel modelling error
- W_k is the noise in the channel
- Estimate h_k and A_k from the received y_k (fully known) and the transmitted X_k (partially known at pilot location only)

Augmented model

• A non-linear problem:

to simultaneously estimate both h_k and A_k

$$\begin{cases} \mathbf{a}_{k+1} = \mathbf{a}_k + \epsilon_k \\ \mathbf{h}_{k+1} = \mathbf{A}(\mathbf{a}_k)\mathbf{h}_k + \mathbf{v}_k \\ \mathbf{y}_{k+1} = \mathbf{X}_k \mathbf{h}_k + \mathbf{w}_k \end{cases}$$

$$\mathbf{z}_k = [\mathbf{a}_k^T \ \mathbf{h}_k^T]^T \\ \mathbf{z}_{k+1} = f(\mathbf{z}_k) + \mathbf{u}_k \\ \mathbf{y}_k = [\mathbf{0}_{1 \times N_A} \ \mathbf{X}_k] \ \mathbf{z}_k + \mathbf{w}_k \end{cases} \text{ and } f(\mathbf{z}_k) = \begin{bmatrix} \mathbf{a}_k \\ A(\mathbf{a}_k)\mathbf{h}_k \end{bmatrix}$$

$$\mathbf{z}_{k+1} = \mathbf{F}_k \mathbf{z}_k + \mathbf{u}_k \\ \mathbf{y}_k = \begin{bmatrix} \mathbf{0} \ \mathbf{X}_k \end{bmatrix} \ \mathbf{z}_k + \mathbf{w}_k \end{cases} \text{ and } \mathbf{F}_n = \begin{bmatrix} \mathbf{I}_{N_A} \ \mathbf{0} \\ \mathbf{H}_{n|n} \ \mathbf{A}_{n|n} \end{bmatrix}$$

A joint state and parameter estimation.

- 1. Prediction: Estimate a priori k-th CFR \hat{h}_k from (k-1)-th channel estimation \hat{h}_{k-1} before receiving a OFDM symbol.
- 2. Correction: Correct the *a priori* k-th CFR ĥ_k
 by using the received OFDM symbole to get a better *a posteriori* k-th CFR ĥ_k

EKF for channel interpolation a decision-directed approach

- For the pilot symbol, the transmitted symbol x_k is known, use x_k for channel estimation.
- For the data symbol, the transmitted symbol x_k is unknown, use the decoded \hat{x}_k for channel estimation.

4. Implementation consideration

• Initialisation: by Least Squares Estimation

$$\hat{\mathbf{h}}_{0,LS} = (\mathbf{X}_0^H \mathbf{X}_0)^{-1} \mathbf{X}_0^H \mathbf{y}_0$$
(1)
= $\left[\frac{y_{0,1}}{x_{0,1}}, \frac{y_{0,2}}{x_{0,2}}, \dots, \frac{y_{0,N_p}}{x_{0,N_p}}\right]$ (2)

Selection of the covariance matrices for channel (measurement) noise W_k

$$\sigma_w^2 = \frac{P_{tx}}{10^{SNR/10}}$$

UCL

5. Simulation results

1. Channel configuration:

a rural area channel model defined by 3GPP

512 subcarriers of which 300 are for data transmission.
 Two speeds of user equipment (UE) 50 and 200 km/h
 SNR varying from 0 to 40 dB at a step size of 5 dB.
 Repeated 20 times (20 runs) at each SNR

Channel estimation Error

Left: by the EKF; right: by the least square estimation

Mean square estimation error

BER performances

- Left: 50km/h;
 Right: 200km/h
- the EKF interpolation filter improved the LS
- In Particular, a SNR gain up to 8 dB obtained for certain BERs (e.g. 0.002) at high-velocity.

6. Summary

- The time-varying radio channel is modeled as an AR process presented as an state space form
- An extended Kalman filter is developed for both
 1. channel estimation at pilot symbols
 - 2. interpolation at data symbols
- A significant improvement of BER performance
- Future work for further improvement: initialised by MMSE, etc. error propagation in decision-directed mode

